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Mean trends
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Trend definition

Often an observed signal exhibits a trend. This is a tendency to increase or
decrease over time. There may also be fluctuations over time. This model
is given by

Xe = pt + Y,

where p; is a time-dependent mean, and Y; is a stationary process, for
example pu; = a + bt.
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Figure: Example of a time series with a trend and seasonality.
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Linear trend removal

There are two common approaches to trend adjustment:

1. Estimate a and b and remove the trend. We could use least squares
regression, and then further analyse the residuals.

2. Take first differences, writing the difference operator V = (I — B):

VXe = Xe — X1
=a+bt+VYe—(a+b(t—1)+ Y1)
=b+Y:— Y
=b+VY;:.

Thus we have got rid of the trend but we are left with the constant b,
and also VY; rather than Y;.
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» In fact, the first difference of a stationary process is stationary, so if
Y; was stationary then so is VY;.

» If we difference again then we arrive at

VX, =V(b+VY:)
=VY,—VY:i1
= (Yt - Yt—l) - (Yt—l - Yt—2)
=Y, —2Yi_1 + Yioo.

Thus the effect of u; has been completely removed from the
observations.
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» Let X; = Y + pr where
e Y} is stationary,
o u:is a (g — 1)™ degree polynomial.

» If u¢ is a (g — 1)t degree polynomial in t then the gt" difference of
pe will be zero. Therefore

qut = Vq yt + Vc’ut

- kz_% (7)1 ¥oon

Because V is a linear operator.
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Periodic trend removal

Sometimes we assume
Xt = st + Y,

and s; is the periodic deterministic function. Y} is assumed a zero-mean
stationary process.
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Periodic and linear trend removal

Let {Y;} be a stationary process with mean zero and let a and b be fixed
constants. X; is given by

Xt:a—i-bt—l—st—i-Yt,

where s; is a deterministic function with period 12, i.e. s;;1120 = s:. By
forming the seasonal difference V)X, = X; — X;_s as well as the
standard difference V.X; = X; — Xi—1 = VU X;, we can form VV(12)X,.
Let us show that this is weakly stationary.
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» First note that
v X, = v12pt 4 v(12y,
= bt — b(t —12) + VA2 y, = 12p + VP2,

vw2x, = yv1?y,
=V(Y:—Yic12) = Ye — Y1 — Yec2 + Yic1z. (5.1)
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» We can calculate

E [vv(mxt] —0

Cov (VV(D)Xt, vv(m)xtfﬂ') =Y = Vr+1 — Vr412 T V7413

— Yr—1+Yr T V41l — Vr412
— Yr—12 + Yr—11 + Yr — Vr+1
+Yr—13 — Vr—12 — Vr—1 + Vr-

This is a function of 7 only and so we have a weakly stationary
process.
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Interaction between periodic and linear trend components

» Now instead set
Xt = (a + bt)st + Yt)

where s; is a deterministic function with period 12, i.e. s;1120 = s;.
Now instead show that V(12)2X, is stationary. We find that

V(lz)Xt = (a + bt)st + Yt - (a + b(t - 12))51_-_12 + Yt—12
=12bs; 12+ Y: — Yi-12

VIV, = 12bs; 15 + Ve — Yeo12 — (12bse—24 + Yeo12 — Yi—24)
=Y:—2Y 120+ Yi_2s4

The expectation of this is clearly zero, and the covariance is clearly
just a function of |7|.
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Seasonal modelling: SARMA

Seasonal modelling: SARMA J
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Seasonal modelling: SARMA

Seasonality

Many econometric and financial processes have seasonal features (s = 4
for quarterly data, s = 12 for monthly data etc). Consider the following
model:

Xe =€ — O

» We can derive the autocorrelation sequence for this process

vr = Cov (Xt, Xt47)
= Cov (et — Oct—s,t4r — Octyr—s)
= 05(57 — 90?67_5 — 903574-5 + 0205(57

=02 ((146%) 6 — 0 (0r—s + 6-45))

» This is a seasonal moving average of order 1.
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Seasonal modelling: SARMA

Definition 5.1 (Seasonal moving average)

A general seasonal moving average process SMA(Q)s takes the form

Xe=¢€r— Z 9§S)5t—js

where {e;} is a mean-zero white noise process.

» We have the seasonal MA polynomial given by

06)(z) = Z (91(5 sj

» So we could write
Xt = @(S)(B)ﬁt
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Seasonal modelling: SARMA

Definition 5.2 (Seasonal autoregression)

A general seasonal autoregressive process SAR(P)s takes the form

P
Xt =&+ Z ¢§S)Xt_j5
j=1

where {e;} is a mean-zero white noise process.
» We have the seasonal AR polynomial given by

» So we could write
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Seasonal modelling: SARMA

Definition 5.3 (SARMA)
We can combine the SAR and SMA with a standard ARMA to get a
SARMA(p, q) x (P, Q)s, i.e.

o (B)®1)(B)X; = ©(B)O1)(B)e,
where {;} is a mean-zero white noise process.
» We have the following relations

1. SMA(Q)s is SARMA(0,0) x (0, Q).
2. SAR(P)s is SARMA(0,0) x (P, 0)s.

» Example: SARMA(0, 1) x (0,1)12:

X, = (1 - 6B) (1 - 9(12)1312) e
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ARIMA

ARIMA
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ARIMA

Motivation

Consider starting from the AR(1) process

Xe = X1+ €.

» Stationarity of this process depends on |¢| < 1.

» If we take ¢ = 1 then the process is a random walk (which is not
stationary):
Xe = Xe—1+ &t

» However, the difference V X; = ¢; is stationary.
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ARIMA

Definition 5.4

We say that a process is an ARIMA(p, d, q) if the d*" difference is an
ARMA(p, q). In other words

®(B)(1 - B)?Y; = ©(B)e;

» If we take Z; = VY, then

p q
Z; = Z $jli_j+er — Zaﬁt—j
j=1 j=1
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ARIMA

» The first popular model we will study is the simple IMA (1,1) model.
We take Z; as the difference Y; — Yi_1,

Zt =&t — 951-_1
» Then recalling the link between Y; and Z; we may write this as
Yt = Yt—l +E&r — 051‘—1
» This is NOT a stationary process.
» Assuming the process starts at t = 0 at Yp = 0 then
Yl =0+ g1 — 980
Yo =Y]+er—0eq
=0+e1 —0gg+ ey —0Oeq

t—1
Y :5t+(1—9)2q—050.

j=1
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ARIMA

From this equation we can now find the variance of the process of interest:

Var(Y:) =02 +(1—6 2Za2+92 2

=o2 {1+ 1—9)2(t— 1) + 6%}

and the covariances (for 7 > 0) can also be calculated from this:

Cov(Ye, Yepr) =02 {1 -0+ (1—0)*(t—1)+6°}.
As 7/t — 0, Corr (Y%, Yiyr) tends to 1.
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ARIMA

» The ARI(1,1) process is defined from a stationary AR process.
» The ARI(1,1) process is defined as (|¢| < 1),

Zi = ¢Zi1+ et

» Then recalling the link between Y; and Z; we may write this as

Ye—Yie1 = (Vi1 — Yio2) + ¢

» Again assuming the process starts at t = 0 with Yy = 0 then

Yi=¢1
Yo =ex+ (1 + ¢)ex

t t—j t

. 1— ¢t—j+1
Yt = ZZ@Z}’@ = 271—(;5 €j
j=1 i=0 Jj=1
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ARIMA

» We use this to determine the second order properties of the process.

1— t—j+1 2
Var ( Yt—a2z< ¢ )

» We can also determine that when 7 > 0

t 1 t+7—j+1
COV(Yt, Yt+T _O_2Z<1_¢ (;+ ) <1—fj¢l+ )

» Again the correlation will be near to unity.
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