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Mean trends

Mean trends
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Mean trends

Trend definition

Often an observed signal exhibits a trend. This is a tendency to increase or
decrease over time. There may also be fluctuations over time. This model
is given by

Xt = µt + Yt ,

where µt is a time-dependent mean, and Yt is a stationary process, for
example µt = a + bt.
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Mean trends
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Figure: Example of a time series with a trend and seasonality.
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Mean trends

Linear trend removal

There are two common approaches to trend adjustment:
1. Estimate a and b and remove the trend. We could use least squares

regression, and then further analyse the residuals.
2. Take first differences, writing the difference operator ∇ = (I − B):

∇Xt = Xt − Xt−1

= a + bt + Yt − (a + b(t − 1) + Yt−1)

= b + Yt − Yt−1

= b +∇Yt .

Thus we have got rid of the trend but we are left with the constant b,
and also ∇Yt rather than Yt .
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Mean trends

I In fact, the first difference of a stationary process is stationary, so if
Yt was stationary then so is ∇Yt .

I If we difference again then we arrive at

∇2Xt = ∇(b +∇Yt)

= ∇Yt −∇Yt−1

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2.

Thus the effect of µt has been completely removed from the
observations.
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Mean trends

I Let Xt = Yt + µt where
Yt is stationary,
µt is a (q − 1)th degree polynomial.

I If µt is a (q − 1)th degree polynomial in t then the qth difference of
µt will be zero. Therefore

∇qXt = ∇qYt +∇qµt

=

q∑
k=0

(
q
k

)
(−1)kYt−k ,

Because ∇ is a linear operator.
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Mean trends

Periodic trend removal

Sometimes we assume
Xt = st + Yt ,

and st is the periodic deterministic function. Yt is assumed a zero-mean
stationary process.
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Mean trends

Periodic and linear trend removal

Let {Yt} be a stationary process with mean zero and let a and b be fixed
constants. Xt is given by

Xt = a + bt + st + Yt ,

where st is a deterministic function with period 12, i.e. st+12 = st . By
forming the seasonal difference ∇(s)Xt = Xt − Xt−s as well as the
standard difference ∇Xt = Xt − Xt−1 = ∇(1)Xt , we can form ∇∇(12)Xt .
Let us show that this is weakly stationary.
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Mean trends

I First note that

∇(12)Xt = ∇(12)bt +∇(12)Yt

= bt − b(t − 12) +∇(12)Yt = 12b +∇(12)Yt

∇∇(12)Xt = ∇∇(12)Yt

= ∇(Yt − Yt−12) = Yt − Yt−1 − Yt−12 + Yt−13. (5.1)
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Mean trends

I We can calculate

E
[
∇∇(12)Xt

]
= 0

Cov
(
∇∇(12)Xt ,∇∇(12)Xt−τ

)
= γτ − γτ+1 − γτ+12 + γτ+13

− γτ−1 + γτ + γτ+11 − γτ+12

− γτ−12 + γτ−11 + γτ − γτ+1

+ γτ−13 − γτ−12 − γτ−1 + γτ .

This is a function of τ only and so we have a weakly stationary
process.
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Mean trends

Interaction between periodic and linear trend components

I Now instead set
Xt = (a + bt)st + Yt ,

where st is a deterministic function with period 12, i.e. st+12 = st .
Now instead show that ∇(12)2Xt is stationary. We find that

∇(12)Xt = (a + bt)st + Yt − (a + b(t − 12))st−12 + Yt−12

= 12bst−12 + Yt − Yt−12

∇(12)∇(12)Xt = 12bst−12 + Yt − Yt−12 − (12bst−24 + Yt−12 − Yt−24)

= Yt − 2Yt−12 + Yt−24

The expectation of this is clearly zero, and the covariance is clearly
just a function of |τ |.
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Seasonal modelling: SARMA

Seasonal modelling: SARMA
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Seasonal modelling: SARMA

Seasonality

Many econometric and financial processes have seasonal features (s = 4
for quarterly data, s = 12 for monthly data etc). Consider the following
model:

Xt = εt − θεt−s

I We can derive the autocorrelation sequence for this process

γτ = Cov (Xt ,Xt+τ )

= Cov (εt − θεt−s , εt+τ − θεt+τ−s)

= σ2
εδτ − θσ2

εδτ−s − θσ2
εδτ+s + θ2σ2

εδτ

= σ2
ε

((
1 + θ2) δτ − θ (δτ−s + δτ+s)

)
I This is a seasonal moving average of order 1.
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Seasonal modelling: SARMA

Definition 5.1 (Seasonal moving average)
A general seasonal moving average process SMA(Q)s takes the form

Xt = εt −
Q∑

j=1
θ
(s)
j εt−js

where {εt} is a mean-zero white noise process.

I We have the seasonal MA polynomial given by

Θ(s)(z) = 1 −
Q∑

j=1
θ
(s)
j zsj .

I So we could write
Xt = Θ(s)(B)εt .
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Seasonal modelling: SARMA

Definition 5.2 (Seasonal autoregression)
A general seasonal autoregressive process SAR(P)s takes the form

Xt = εt +
P∑

j=1
φ
(s)
j Xt−js

where {εt} is a mean-zero white noise process.

I We have the seasonal AR polynomial given by

Φ(s)(z) = 1 −
P∑

j=1
φ
(s)
j zsj .

I So we could write
Φ(s)(B)Xt = εt .
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Seasonal modelling: SARMA

Definition 5.3 (SARMA)
We can combine the SAR and SMA with a standard ARMA to get a
SARMA(p, q)× (P ,Q)s , i.e.

Φ(B)Φ(s)(B)Xt = Θ(B)Θ(s)(B)εt

where {εt} is a mean-zero white noise process.

I We have the following relations
1. SMA(Q)s is SARMA(0, 0)× (0,Q)s .
2. SAR(P)s is SARMA(0, 0)× (P , 0)s .

I Example: SARMA(0, 1)× (0, 1)12:

Xt = (1 − θB)
(

1 − θ(12)B12
)
εt .
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ARIMA

ARIMA
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ARIMA

Motivation

Consider starting from the AR(1) process

Xt = φXt−1 + εt .

I Stationarity of this process depends on |φ| < 1.
I If we take φ = 1 then the process is a random walk (which is not

stationary):
Xt = Xt−1 + εt

I However, the difference ∇Xt = εt is stationary.
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ARIMA

Definition 5.4
We say that a process is an ARIMA(p, d , q) if the d th difference is an
ARMA(p, q). In other words

Φ(B)(1 − B)dYt = Θ(B)εt

I If we take Zt = ∇dYt then

Zt =

p∑
j=1

φjZt−j + εt −
q∑

j=1
θjεt−j
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ARIMA

I The first popular model we will study is the simple IMA (1, 1) model.
We take Zt as the difference Yt − Yt−1,

Zt = εt − θεt−1

I Then recalling the link between Yt and Zt we may write this as

Yt = Yt−1 + εt − θεt−1

I This is NOT a stationary process.
I Assuming the process starts at t = 0 at Y0 = 0 then

Y1 = 0 + ε1 − θε0

Y2 = Y1 + ε2 − θε1

= 0 + ε1 − θε0 + ε2 − θε1

= · · ·

Yt = εt + (1 − θ)
t−1∑
j=1

εj − θε0.
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ARIMA

From this equation we can now find the variance of the process of interest:

Var (Yt) = σ2
ε + (1 − θ)2

t−1∑
j=1

σ2
ε + θ2σ2

ε

= σ2
ε

{
1 + (1 − θ)2(t − 1) + θ2}

and the covariances (for τ > 0) can also be calculated from this:

Cov (Yt ,Yt+τ ) = σ2
ε

{
1 − θ + (1 − θ)2(t − 1) + θ2} .

As τ/t → 0, Corr (Yt ,Yt+τ ) tends to 1.
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ARIMA

I The ARI(1, 1) process is defined from a stationary AR process.
I The ARI(1, 1) process is defined as (|φ| < 1),

Zt = φZt−1 + εt

I Then recalling the link between Yt and Zt we may write this as

Yt − Yt−1 = φ (Yt−1 − Yt−2) + εt

I Again assuming the process starts at t = 0 with Y0 = 0 then

Y1 = ε1

Y2 = ε2 + (1 + φ)ε1

. . . = . . .

Yt =
t∑

j=1

t−j∑
i=0

φiεj =
t∑

j=1

1 − φt−j+1

1 − φ
εj
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ARIMA

I We use this to determine the second order properties of the process.

Var (Yt) = σ2
ε

t∑
j=1

(
1 − φt−j+1

1 − φ

)2
.

I We can also determine that when τ > 0

Cov (Yt ,Yt+τ ) = σ2
ε

t∑
j=1

(
1 − φt−j+1

1 − φ

)(
1 − φt+τ−j+1

1 − φ

)
I Again the correlation will be near to unity.
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