

Time Series lecture 5

SARIMA

Sofia Olhede

March 19, 2025

Lecture outline

1. Mean trends
2. Seasonal modelling: SARMA
3. ARIMA

Mean trends

Trend definition

Often an observed signal exhibits a trend. This is a tendency to increase or decrease over time. There may also be fluctuations over time. This model is given by

$$X_t = \mu_t + Y_t,$$

where μ_t is a time-dependent mean, and Y_t is a stationary process, for example $\mu_t = a + bt$.

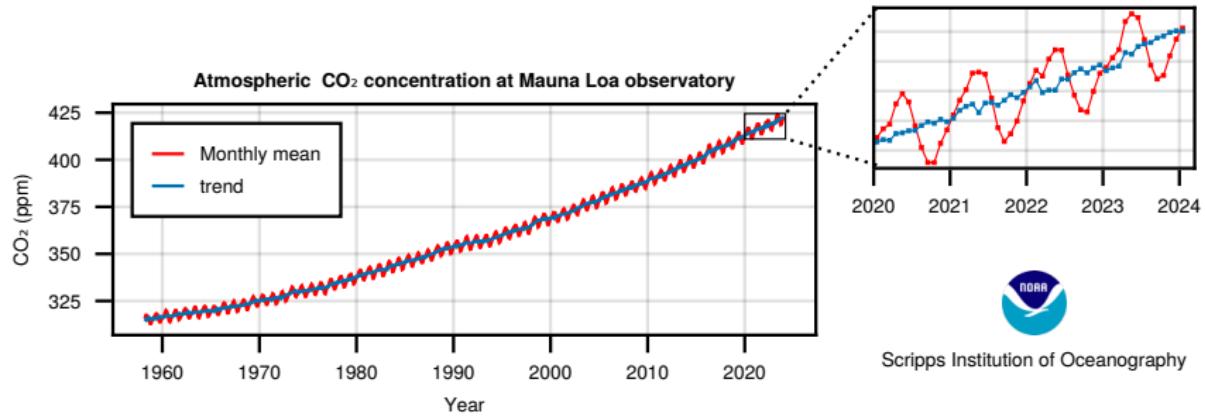


Figure: Example of a time series with a trend and seasonality.

Linear trend removal

There are two common approaches to trend adjustment:

1. Estimate a and b and remove the trend. We could use least squares regression, and then further analyse the residuals.
2. Take first differences, writing the difference operator $\nabla = (I - B)$:

$$\begin{aligned}\nabla X_t &= X_t - X_{t-1} \\ &= a + bt + Y_t - (a + b(t-1) + Y_{t-1}) \\ &= b + Y_t - Y_{t-1} \\ &= b + \nabla Y_t.\end{aligned}$$

Thus we have got rid of the trend but we are left with the constant b , and also ∇Y_t rather than Y_t .

- ▶ In fact, the first difference of a stationary process is stationary, so if Y_t was stationary then so is ∇Y_t .
- ▶ If we difference again then we arrive at

$$\begin{aligned}\nabla^2 X_t &= \nabla(b + \nabla Y_t) \\ &= \nabla Y_t - \nabla Y_{t-1} \\ &= (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}) \\ &= Y_t - 2Y_{t-1} + Y_{t-2}.\end{aligned}$$

Thus the effect of μ_t has been completely removed from the observations.

- ▶ Let $X_t = Y_t + \mu_t$ where
 - Y_t is stationary,
 - μ_t is a $(q - 1)^{\text{th}}$ degree polynomial.
- ▶ If μ_t is a $(q - 1)^{\text{th}}$ degree polynomial in t then the q^{th} difference of μ_t will be zero. Therefore

$$\begin{aligned}\nabla^q X_t &= \nabla^q Y_t + \nabla^q \mu_t \\ &= \sum_{k=0}^q \binom{q}{k} (-1)^k Y_{t-k},\end{aligned}$$

Because ∇ is a linear operator.

Periodic trend removal

Sometimes we assume

$$X_t = s_t + Y_t,$$

and s_t is the periodic deterministic function. Y_t is assumed a zero-mean stationary process.

Periodic and linear trend removal

Let $\{Y_t\}$ be a stationary process with mean zero and let a and b be fixed constants. X_t is given by

$$X_t = a + bt + s_t + Y_t,$$

where s_t is a deterministic function with period 12, i.e. $s_{t+12} = s_t$. By forming the seasonal difference $\nabla^{(s)}X_t = X_t - X_{t-s}$ as well as the standard difference $\nabla X_t = X_t - X_{t-1} = \nabla^{(1)}X_t$, we can form $\nabla \nabla^{(12)}X_t$. Let us show that this is weakly stationary.

- ▶ First note that

$$\begin{aligned}\nabla^{(12)} X_t &= \nabla^{(12)} b t + \nabla^{(12)} Y_t \\ &= b t - b(t-12) + \nabla^{(12)} Y_t = 12b + \nabla^{(12)} Y_t \\ \nabla \nabla^{(12)} X_t &= \nabla \nabla^{(12)} Y_t \\ &= \nabla(Y_t - Y_{t-12}) = Y_t - Y_{t-1} - Y_{t-12} + Y_{t-13}. \quad (5.1)\end{aligned}$$

- We can calculate

$$\mathbb{E} \left[\nabla \nabla^{(12)} X_t \right] = 0$$

$$\begin{aligned} \text{Cov} \left(\nabla \nabla^{(12)} X_t, \nabla \nabla^{(12)} X_{t-\tau} \right) &= \gamma_\tau - \gamma_{\tau+1} - \gamma_{\tau+12} + \gamma_{\tau+13} \\ &\quad - \gamma_{\tau-1} + \gamma_\tau + \gamma_{\tau+11} - \gamma_{\tau+12} \\ &\quad - \gamma_{\tau-12} + \gamma_{\tau-11} + \gamma_\tau - \gamma_{\tau+1} \\ &\quad + \gamma_{\tau-13} - \gamma_{\tau-12} - \gamma_{\tau-1} + \gamma_\tau. \end{aligned}$$

This is a function of τ only and so we have a weakly stationary process.

Interaction between periodic and linear trend components

- ▶ Now instead set

$$X_t = (a + bt)s_t + Y_t,$$

where s_t is a deterministic function with period 12, i.e. $s_{t+12} = s_t$. Now instead show that $\nabla^{(12)2}X_t$ is stationary. We find that

$$\begin{aligned}\nabla^{(12)}X_t &= (a + bt)s_t + Y_t - (a + b(t-12))s_{t-12} + Y_{t-12} \\ &= 12bs_{t-12} + Y_t - Y_{t-12}\end{aligned}$$

$$\begin{aligned}\nabla^{(12)}\nabla^{(12)}X_t &= 12bs_{t-12} + Y_t - Y_{t-12} - (12bs_{t-24} + Y_{t-12} - Y_{t-24}) \\ &= Y_t - 2Y_{t-12} + Y_{t-24}\end{aligned}$$

The expectation of this is clearly zero, and the covariance is clearly just a function of $|\tau|$.

Seasonal modelling: SARMA

Seasonality

Many econometric and financial processes have seasonal features ($s = 4$ for quarterly data, $s = 12$ for monthly data etc). Consider the following model:

$$X_t = \varepsilon_t - \theta \varepsilon_{t-s}$$

- We can derive the autocorrelation sequence for this process

$$\begin{aligned}\gamma_\tau &= \text{Cov}(X_t, X_{t+\tau}) \\ &= \text{Cov}(\varepsilon_t - \theta \varepsilon_{t-s}, \varepsilon_{t+\tau} - \theta \varepsilon_{t+\tau-s}) \\ &= \sigma_\varepsilon^2 \delta_\tau - \theta \sigma_\varepsilon^2 \delta_{\tau-s} - \theta \sigma_\varepsilon^2 \delta_{\tau+s} + \theta^2 \sigma_\varepsilon^2 \delta_\tau \\ &= \sigma_\varepsilon^2 ((1 + \theta^2) \delta_\tau - \theta (\delta_{\tau-s} + \delta_{\tau+s}))\end{aligned}$$

- This is a seasonal moving average of order 1.

Definition 5.1 (Seasonal moving average)

A general seasonal moving average process $\text{SMA}(Q)_s$ takes the form

$$X_t = \varepsilon_t - \sum_{j=1}^Q \theta_j^{(s)} \varepsilon_{t-j s}$$

where $\{\varepsilon_t\}$ is a mean-zero white noise process.

- We have the seasonal MA polynomial given by

$$\Theta^{(s)}(z) = 1 - \sum_{j=1}^Q \theta_j^{(s)} z^{sj}.$$

- So we could write

$$X_t = \Theta^{(s)}(B) \varepsilon_t.$$

Definition 5.2 (Seasonal autoregression)

A general seasonal autoregressive process $SAR(P)_s$ takes the form

$$X_t = \varepsilon_t + \sum_{j=1}^P \phi_j^{(s)} X_{t-j s}$$

where $\{\varepsilon_t\}$ is a mean-zero white noise process.

- We have the seasonal AR polynomial given by

$$\Phi^{(s)}(z) = 1 - \sum_{j=1}^P \phi_j^{(s)} z^{sj}.$$

- So we could write

$$\Phi^{(s)}(B) X_t = \varepsilon_t.$$

Definition 5.3 (SARMA)

We can combine the SAR and SMA with a standard ARMA to get a $\text{SARMA}(p, q) \times (P, Q)_s$, i.e.

$$\Phi(B)\Phi^{(s)}(B)X_t = \Theta(B)\Theta^{(s)}(B)\varepsilon_t$$

where $\{\varepsilon_t\}$ is a mean-zero white noise process.

- ▶ We have the following relations
 1. SMA(Q) $_s$ is SARMA($0, 0$) $\times (0, Q)_s$.
 2. SAR(P) $_s$ is SARMA($0, 0$) $\times (P, 0)_s$.
- ▶ Example: SARMA($0, 1$) $\times (0, 1)_{12}$:

$$X_t = (1 - \theta B) \left(1 - \theta^{(12)} B^{12}\right) \varepsilon_t.$$

ARIMA

Motivation

Consider starting from the AR(1) process

$$X_t = \phi X_{t-1} + \varepsilon_t.$$

- ▶ Stationarity of this process depends on $|\phi| < 1$.
- ▶ If we take $\phi = 1$ then the process is a random walk (which is not stationary):

$$X_t = X_{t-1} + \varepsilon_t$$

- ▶ However, the difference $\nabla X_t = \varepsilon_t$ is stationary.

Definition 5.4

We say that a process is an ARIMA(p, d, q) if the d^{th} difference is an ARMA(p, q). In other words

$$\Phi(B)(1 - B)^d Y_t = \Theta(B) \varepsilon_t$$

- If we take $Z_t = \nabla^d Y_t$ then

$$Z_t = \sum_{j=1}^p \phi_j Z_{t-j} + \varepsilon_t - \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

- ▶ The first popular model we will study is the simple IMA (1, 1) model. We take Z_t as the difference $Y_t - Y_{t-1}$,

$$Z_t = \varepsilon_t - \theta \varepsilon_{t-1}$$

- ▶ Then recalling the link between Y_t and Z_t we may write this as

$$Y_t = Y_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1}$$

- ▶ This is NOT a stationary process.
- ▶ Assuming the process starts at $t = 0$ at $Y_0 = 0$ then

$$Y_1 = 0 + \varepsilon_1 - \theta \varepsilon_0$$

$$Y_2 = Y_1 + \varepsilon_2 - \theta \varepsilon_1$$

$$= 0 + \varepsilon_1 - \theta \varepsilon_0 + \varepsilon_2 - \theta \varepsilon_1$$

$$= \dots$$

$$Y_t = \varepsilon_t + (1 - \theta) \sum_{j=1}^{t-1} \varepsilon_j - \theta \varepsilon_0.$$

From this equation we can now find the variance of the process of interest:

$$\begin{aligned}\text{Var}(Y_t) &= \sigma_\varepsilon^2 + (1 - \theta)^2 \sum_{j=1}^{t-1} \sigma_\varepsilon^2 + \theta^2 \sigma_\varepsilon^2 \\ &= \sigma_\varepsilon^2 \{1 + (1 - \theta)^2(t - 1) + \theta^2\}\end{aligned}$$

and the covariances (for $\tau > 0$) can also be calculated from this:

$$\text{Cov}(Y_t, Y_{t+\tau}) = \sigma_\varepsilon^2 \{1 - \theta + (1 - \theta)^2(t - 1) + \theta^2\}.$$

As $\tau/t \rightarrow 0$, $\text{Corr}(Y_t, Y_{t+\tau})$ tends to 1.

- ▶ The ARI(1, 1) process is defined from a stationary AR process.
- ▶ The ARI(1, 1) process is defined as ($|\phi| < 1$),

$$Z_t = \phi Z_{t-1} + \varepsilon_t$$

- ▶ Then recalling the link between Y_t and Z_t we may write this as

$$Y_t - Y_{t-1} = \phi (Y_{t-1} - Y_{t-2}) + \varepsilon_t$$

- ▶ Again assuming the process starts at $t = 0$ with $Y_0 = 0$ then

$$Y_1 = \varepsilon_1$$

$$Y_2 = \varepsilon_2 + (1 + \phi)\varepsilon_1$$

$$\dots = \dots$$

$$Y_t = \sum_{j=1}^t \sum_{i=0}^{t-j} \phi^i \varepsilon_j = \sum_{j=1}^t \frac{1 - \phi^{t-j+1}}{1 - \phi} \varepsilon_j$$

- We use this to determine the second order properties of the process.

$$\text{Var}(Y_t) = \sigma_{\varepsilon}^2 \sum_{j=1}^t \left(\frac{1 - \phi^{t-j+1}}{1 - \phi} \right)^2.$$

- We can also determine that when $\tau > 0$

$$\text{Cov}(Y_t, Y_{t+\tau}) = \sigma_{\varepsilon}^2 \sum_{j=1}^t \left(\frac{1 - \phi^{t-j+1}}{1 - \phi} \right) \left(\frac{1 - \phi^{t+\tau-j+1}}{1 - \phi} \right)$$

- Again the correlation will be near to unity.